Choose the correct answer in each of the following:

Section 2.5+2.6:

1. If
$$f(x) = \begin{cases} \frac{3x-3}{x^2+x-2} & \text{if } x > 1\\ 2x^2-x & \text{if } x \le 1 \end{cases}$$
, then $f(x)$ is

- (a) discontinuous at x = 1
- **(b)** continuous at x = 1
- (c) discontinuous from the left at x = 1
- (d) discontinuous from the right at x = 1.

2.
$$\lim_{x \to 1^{-}} \sqrt{1-x} =$$

- **(a)** 1
- **(b)** −1
- **(c)** 0
- (d) Does not exist

- **3**. The function $f(x) = \sqrt{1-x}$ is
- (a) continuous at x = 1.
- **(b)** continuous from the left at x = 1.
- (c) continuous from the right at x = 1.
- (d) continuous on \mathbb{R} .

- **4**. The function $f(x) = \frac{3\cos x}{x-1}$ is discontinuous
- (a) at x = -1
- **(b)** at x = 1
- (c) at x = 0
- (**d**) at x = -1, x = 1

5. The horizontal asymptote(s) of the function f(x) whose graph is given is (are)

(a)
$$y = -2$$

(b)
$$y = -1$$

(c)
$$x = 0, x = -1$$

(d)
$$x = -2$$

6. The horizontal asymptote(s) of the function $f(x) = \frac{\sqrt{4x^2 + 4x} - 1}{2x + 1}$ is (are)

(a)
$$y = -1.y = 1$$

(b)
$$y = 2$$

(c)
$$x = -1, x = 1$$

(d)
$$x = 2$$

7. The horizontal asymptote of the function $f(x) = e^x + 5$ is

(a)
$$x = 5$$

(b)
$$y = 0$$

(c)
$$x = -5$$

(d)
$$y = 5$$

answers: 1-b, 2-c, 3-b, 4-b, 5-a, 6-a, 7-d,.